
Basin attractors for various methods

Melvin Scott

Beny Neta

Naval Postgraduate School, Department of Applied Mathematics
Monterey, CA 93943; e-mail: bneta@nps.edu
Tel.: 1 (831) 656-2235, Fax: 1 (831) 656-2355

Changbum Chun

Department of Mathematics, Sungkyunkwan University
Suwon 440-746, Republic of Korea; e-mail: cbchun@skku.edu

Abstract

There are many methods for the solution of a nonlinear algebraic equation. The meth-

ods are classified by the order, informational efficieny and efficiency index. Here we

consider another criterion, namely the basin of attraction of the method and its de-

pendence on the order. We discuss several methods of various orders and present the

basin of attraction for several examples. It can be seen that ..........................
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1 Introduction

There is a vast literature for the numerical solution of nonlinear equations. In general
methods are classified as bracketing, fixed point or hybrid. In the first class one
starts with an initial interval in which the function changes sign and at each iteration
step the interval shrinks. In the fixed point methods one starts with an initial point
and create a sequence that should converge to the desired solution. The methods
are also classified by their order of convergence, p, and the number of function- (and
derivative-) evaluation per step, denoted by d. There are two efficiency measures
defined as I = p/d (informational efficiency) and E = p1/d (efficiency index). Methods
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for the approximation of multiple roots are also available in the literature. Some of
these methods require the knowledge of the multiplicity in advance.

Here we consider another criterion for comparison. The idea of basin of attraction of
some root-finding methods was introduced by Stewart [13]. He compared Newton’s
method to the third order methods given by Halley [2], Chebyshev [3] and Laguerre
[4]. In an ideal case, if a function has n distinct zeros, then the plane is divided to n
basins. For example, if we have the polynomial z3 − 1, then the roots are z = 1 and
z = −1±

√
3i

2
, see figure 1. Ideally the basins boundaries are straight lines. Actually,

depending on the numerical method, we find the basin boundaries are much more
complex, see example 5 later.

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

–0.4 –0.2 0.2 0.4 0.6 0.8 1

Figure 1: Location of the roots of z3 − 1

Our study considers seven (????) methods of increasing order, two of which were
considered by Stewart. We include optimal methods of order p = 2, 4, 8, 16. Note
that a method of order p = 2n is optimal (see [6]) in the sense that it requires n + 1
function- (and derivative-) evaluations per cycle. The methods we consider here with
their order of convergence are:

1. Newton’s method (p = 2)
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2. Halley’s method (p = 3)

3. King’s optimal method (p = 4)

4. Kung-Traub’s optimal method (p = 4)

5. Murakami’s method (p = 5)

6. Neta’s method (p = 6)

7. Neta-Chun’s method (p = 6)

8. Neta-Johnson’s method (p = 8)

9. Neta’s optimal method (p = 8)

10. Neta’s optimal method (p = 16)

The reason why we introduced more than one optimal fourth order method and more
than one sixth order method will be clarified later.

Newton’s optimal method (see e.g. Conte and deBoor [1]) which is of second order
for simple roots and given by

xn+1 = xn −
fn
f ′
n

(1)

where fn = f(xn) and similarly for the derivative. Halley’s method [2] is of third
order and given by

xn+1 = xn −

fn
f ′
n

1−
f ′′
n

2f ′
n

fn
f ′
n

. (2)

King’s fourth order optimal family of methods [5] is given by

wn = xn −
fn
f ′
n

xn+1 = wn −
f(wn)

f ′
n

fn + βf(wn)

fn + (β − 2)f(wn)
.

(3)
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Another optimal fourth order method is due to Kung and Traub [6] given by

wn = xn −
fn
f ′
n

xn+1 = wn −
f(wn)

f ′
n

1

[1− f(wn)/fn]
2
.

(4)

Murakami’s fifth order method [7] is given by

xn+1 = xn − a1un − a2w2(xn)− a3w3(xn)− ψ(xn), (5)

where

w2(xn) =
fn

f ′(xn − un)
,

w3(xn) =
fn

f ′(xn + βun + γw2(xn))
,

ψ(xn) =
fn

b1f ′
n + b2f ′(xn − un)

.

(6)

To get fifth order, Murakami suggested several possibilities and we picked the follow-
ing

γ = 0, a1 = .3, a2 = −.5, a3 =
2

3
,

b1 = −

15

32
, b2 =

75

32
, β = −

1

2

(7)

Neta’s sixth order method [8] is given by

wn = xn −
fn
f ′
n

,

zn = wn −
f(wn)

f ′
n

fn + βf(wn)

fn + (β − 2)f(wn)
,

xn+1 = zn −
f(zn)

f ′
n

fn − f(wn)

fn − 3f(wn)
.

(8)
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Note that the first two steps are King’s method.

Another sixth order method due to Neta and Chun is based on the first steps of Kung
and Traub,

wn = xn −
fn
f ′
n

zn = wn −
f(wn)

f ′
n

1

[1− f(wn)/fn]
2

xn+1 = zn −
f(zn)

f ′
n

1

[1− f(wn)/fn − f(zn)/fn]
2
.

(9)

Neta and Johnson [9] have developed an eighth order method based on Jarratt’s
(method [10]

zn = xn −
f(xn)

1

6
f ′(xn) +

1

6
f ′(yn) +

2

3
f ′(ηn)

xn+1 = zn −
f(zn)

f ′(xn)

f ′(xn) + f ′(yn) + a2f
′(ηn)

(−1− a2)f ′(xn) + (3 + a2)f ′(yn) + a2f ′(ηn)

(10)

where

un =
f(xn)

f ′(xn)

yn = xn − un

vn =
f(xn)

f ′(yn)

ηn = xn −
1

8
un −

3

8
vn

(11)

In our experiments we have used a2 = −1. This is not an optimal method since it
requires 2 function- and 3 derivative-evaluation per cycle.
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Another eighth order method is the optimal method due to Neta and Petković [11].
It is based on Kung and Traub’s optimal fourth order method [6].

wn = xn −
fn
f ′
n

zn = xn −
f(wn)

f ′
n

1

[1− f(wn)/fn]
2

xn+1 = xn −
fn
f ′
n

+ cnf
2

n − dnf
3

n

(12)

where

dn =
1

[f(wn)− f(xn)] [f(wn)− f(zn)]

[

wn − xn
f(wn)− f(xn)

−

1

f ′
n

]

−

1

[f(wn)− f(zn)] [f(zn)− f(xn)]

[

zn − xn
f(zn)− f(xn)

−

1

f ′
n

]

cn =
1

f(wn)− f(xn)

[

wn − xn
f(wn)− f(xn)

−

1

f ′
n

]

− dn [f(wn)− f(xn)]

(13)

Neta’s sixteenth order optimal method [12] is given by

wn = xn −
fn
f ′
n

,

zn = wn −
f(wn)

f ′
n

fn + βf(wn)

fn + (β − 2)f(wn)
,

tn = xn −
fn
f ′
n

+ cnf
2

n − dnf
3

n

xn+1 = xn −
fn
f ′
n

+ ρnf
2

n − γnf
3

n + qnf
4

n

(14)
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where cn and dn are given by (13) and

qn =

φ(tn)− φ(zn)

F (tn)− F (zn)
−

φ(wn)− φ(zn)

F (wn)− F (zn)

F (tn)− F (wn)
,

γn =
φ(tn)− φ(zn)

F (tn)− F (zn)
− qn (F (tn) + F (zn)) ,

ρn = φ(tn)− γnF (tn)− qnF
2(tn),

(15)

and for δn = wn, zn, tn

F (δn) = f(δn)− fn,

φ(δn) =
(δn − xn)

F 2(δn)
−

1

f ′
nF (δn)

.
(16)

2 numerical experiments

We have used the above methods for 14 different polynomials. Some are real and
some are complex polynomials. Four examples have only real roots and the rest have
a combination of real and complex ones. All the roots are simple. In the first case
we have taken the cubic polynomial

x3 + 4x2 − 10 (17)

Clearly, one root is real and the other two are complex conjugate.

Note that the basin of attraction of each root is larger for Halley’s method than New-
ton’s. We have shown the results for King’s method using the parameter β = −1/2.
The results are not much better for several other values of β we tried. The basins
of attraction for the optimal Kung-Traub method is better than any of the King’s
method (notice the second quadrant). Therefore, we will not use King’s method in
the rest of the experiments. Murakami’s fifth order method gives basins of attraction
similar to Newton’s. On the other hand, Neta’s sixth order method which is based
on King’s method and uses β = −1/2 shows some chaotic behavior in the second
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Figure 2: Newton’s (left) and Halley’s method (right) for the cubic polynomial whose
roots are: 1.365230013, -2.682615007+.3582593602i, -2.682615007-.3582593602i

quadrant. One sees too many points there that converge to the root in the third
quadrant. This is similar to the results for King’s method.

Neta-Johnson’s eighth order method has basins of attraction similar to Newton’s
method. On the other hand, the optimal eighth order method (12) is much more
chaotic. The 16th order optimal method has a smaller basin of attraction for the
real root, but it doesn’t show the chaotic behavior of King’s, Neta’s sixth order and
Neta-Petkovic eighth order. In general, one cannot say that increasing the order of
the method will adversly affect the basins of attraction very much.
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Figure 3: King’s fourth order method with β = −1/2 (left) and Kung and Traub’s
fourth order method (right)
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Figure 4: Murakami’s fifth order method (left) and Neta’s sixth order method with
β = −1/2 (right)
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Figure 5: Neta’s sixth order method based on Kung-Traub scheme
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Figure 6: Neta and Johnson’s eighth order (left) and Neta and Petkovic’s optimal
eighth order method (right)
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Figure 7: Neta’s sixteenth order method

11



In our next example, we have taken the real quartic polynomial whose roots are
−25,−1, 20, 25.

x4 − 19x3 − 645x2 + 11875x+ 12500 (18)
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Figure 8: Newton’s (left) and Halley’s method (right) for the quartic polynomial
whose roots are: -25, -1, 20, 25

As can be seen, the optimal eighth and sixteenth order methods as well as the sixth
order are not doing very well.
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Figure 9: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 10: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)

13



–30

–20

–10

10

20

30

y

–30 –20 –10 10 20 30

x

–30

–20

–10

10

20

30

y

–30 –20 –10 10 20 30

x

Figure 11: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)

14



In our next example, we have taken a cubic polynomial with real simple roots.

x3 − x (19)
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Figure 12: Newton’s (left) and Halley’s method (right) for the cubic polynomial whose
roots are: -1, 0, 1

As can be seen, the optimal eighth and sixteenth order methods as well as the sixth
order are not doing very well.
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Figure 13: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 14: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)

16



–3

–2

–1

1

2

3

y

–3 –2 –1 1 2 3

x

–3

–2

–1

1

2

3

y

–3 –2 –1 1 2 3

x

Figure 15: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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In our next exaple, we took a quintic polynomial with real simple roots.

x5 − 5x3 + 4x (20)
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Figure 16: Newton’s (left) and Halley’s method (right) for the quintic polynomial
whose roots are: -2, -1, 0, 1, 2

As can be seen, the optimal eighth and sixteenth order methods as well as the sixth
order are not doing very well.
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Figure 17: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 18: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 19: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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In the next three examples we have taken polynomial yielding the roots of unity. The
first is a cubic then quintic and lastly a polynomial of degree 7.

x3 − 1 (21)
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Figure 20: Newton’s (left) and Halley’s method (right) for the cubic polynomial whose
roots are: 1., -.5+.8660254040i, -.5-.8660254040i

As can be seen, the optimal eighth order and the sixth order methods are not doing
very well.
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Figure 21: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 22: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 23: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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x5 − 1 (22)
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Figure 24: Newton’s (left) and Halley’s method (right) for the five roots of unity

As can be seen, the optimal eighth order and the sixth order methods are not doing
very well.
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Figure 25: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 26: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 27: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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x7 − 1 (23)
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Figure 28: Newton’s (left) and Halley’s method (right) for the seven roots of unity

As can be seen, only the optimal eighth order method is not doing very well.
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Figure 29: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 30: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 31: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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The last 6 examples are using complex polynomials with simple real and complex
roots.

x3 + 2x2 − 3ix2 −
3

4
x−

9

2
ix−

7

4
−

3

2
i (24)
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Figure 32: Newton’s (left) and Halley’s method (right) for the complex cubic poly-
nomial whose roots are: -.5+2i, -.5+i, -1
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Figure 33: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 34: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 35: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)

32



x3 − 3x2 + 5ix2 − 51ix− 48x− 54 + 54i (25)
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Figure 36: Newton’s (left) and Halley’s method (right) for the complex cubic poly-
nomial whose roots are: -6-6i, i, 9

As can be seen, the sixth order and the optimal sixteenth order methods are not
doing very well.
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Figure 37: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 38: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 39: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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x4 + 20ix2 − 36 (26)
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Figure 40: Newton’s (left) and Halley’s method (right) for the complex quartic poly-
nomial whose roots are: -3+3i, 1-i, -1+i, 3-3i

As can be seen, the optimal eighth and sixteenth order methods as well as the sixth
order are not doing very well.

36



–4

–2

0

2

4

y

–4 –2 2 4

x

Figure 41: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 42: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 43: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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x5 + 20ix3 − 36x (27)
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Figure 44: Newton’s (left) and Halley’s method (right) for the complex quintic poly-
nomial whose roots are: -3+3i, 1-i, -1+i, 3-3i, 0

As can be seen, the sixth order and the optimal sixteenth order methods are not
doing very well.
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Figure 45: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 46: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 47: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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x5+(5− i)x4+(6− 38i)x3+(−336+96i)x2− (3072− 1536i)x− 10240+5120i (28)
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Figure 48: Newton’s (left) and Halley’s method (right) for the complex quintic poly-
nomial whose roots are: -4+2i, -5-5i, -4-4i, 8i, 8

As can be seen, the optimal eighth and sixteenth order methods as well as the sixth
order are not doing very well.
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Figure 49: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 50: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 51: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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x6−(1−2i)x5+(6−39i)x4−(219+2i)x3−(1295−263i)x2−(28428−9936i)x+8640+28512i
(29)
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Figure 52: Newton’s (left) and Halley’s method (right) for the complex sixth degree
polynomial whose roots are: 3+7i, -8i, -6-6i, i, -5+4i, 9

As can be seen, the optimal eighth and sixteenth order methods as well as the sixth
order are not doing very well.
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Figure 53: Kung and Traub’s fourth order method (left) and Murakami’s fifth order
method (right)
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Figure 54: Neta’s sixth order method (left) and Neta and Johnson’s eighth order
method (right)
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Figure 55: Neta and Petkovic’s optimal eighth order (left) and Neta’s sixteenth order
method (right)
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